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Abstract: In this paper, the unsteady MHD flow of second grade fluids in a porous medium are analyzed. It is
assumed that the bounding infinite inclined plate has a ramped wall temperature with the presence of heat and
mass diffusion. Closed-form solutions in a general form are obtained by using the Laplace transform technique.
The obtained results for velocity is found to satisfy all the imposed initial and boundary conditions. It can be
reduced to known solutions from the literature as limiting cases.
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1 Introduction
Free convection flow past an inclined plate is essen-
tial due to its wide applications in modern technology.
[1] investigated the effect of thermal radiation on un-
steady MHD free convection flow of an optically thin
gray gas past an infinite inclined isothermal plate. In
recent years, ismail et al. and ismail et al. [2, 3] per-
formed the effects radiation on MHD free convection
flow in a porous medium past an infinite inclined plate
with ramped wall temperature.

Non-Newtonian fluids are important because of
its significant application such as peristaltic transport
[4], polymers processing, biomechanics, enhanced oil
recovery and food products [5]. Samiulhaq et al. [6]
examined a free convection flow of a second grade
fluid with ramped wall temperature using Laplace
transform method. Most recently, samiulhaq et al. [7]
considered a porous medium with the flow of free con-
vection second grade fluids.

However, a little work has been studied regarding
second grade fluids with heat and mass transfer effects
over an inclined plate, which occurs frequently in na-
ture, hence the motivation of this paper. The objective
of this present paper is to solve the double diffusions
of second grade fluids on unsteady MHD free convec-

tion flow in a porous medium past an infinite inclined
plate with ramped temperature using Laplace trans-
form technique.

2 Mathematical Formulation
Consider the unsteady MHD of second grade incom-
pressible fluids with combined heat and mass transfer
by natural convection flow, near an infinite inclined
plate embedded in a saturated porous medium. The
x∗-axis is along to the plate with the inclination angle
φ to the vertical and the y∗- axis is taken normal to the
plate. The plate is assumed to be electrically conduct-
ing with a uniform magnetic field B of strength B0,
applied in a direction perpendicular to the plate. The
magnetic Reynolds number is assumed to be small in
order to neglect the effect of applied magnetic field.
The radiation effect is also taken into account. Ini-
tially, for time t ≤ 0, both the fluid and the plate are
at rest with the constant temperature T ∗∞ and constant
concentration C∗∞. At a time t∗ > 0, the tempera-
ture is raised or lowered to T ∗∞+ (T ∗w − T ∗∞) t

∗

t0
when

t∗ ≤ t0. Thereafter, it is maintained at a constant tem-
perature T ∗w when t∗ > t0. The concentration is raised
to a constant concentration C∗w. The physical vari-
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ables become functions of the time t∗ and the space
y∗ only, since plate is infinite in x∗ and z∗-directions.
The geometry of the problem is shown in Figure 1.

Figure 1: Geometry diagram and coordinate system

From the above assumptions, the unsteady MHD
free convection viscous fluids flow past an infinite in-
clined plate in a porous medium is governed by

∂u∗

∂t∗ = v ∂
2u∗

∂y∗2 + α1
ρ

∂3u∗

∂y∗2∂t∗ −
σB2

0
ρ u∗

− θ
K∗

(
v + α1

∂
∂t∗

)
u∗

+gβT cosφ (T ∗ − T ∗∞)
+ gβC cosφ (C∗ − C∗∞) ,

(1)

∂T ∗

∂t∗
=

k

ρcp

∂2T ∗

∂y∗2
− 1

ρcp

∂q∗r
∂y∗

, (2)

∂C∗

∂t∗
= D

∂2C∗

∂y∗2
, (3)

with the following initial and boundary conditions:

u∗ = 0, T ∗ = T ∗∞, C
∗ = C∗∞,

at y∗ ≥ 0 and t∗ ≤ 0,

u∗ = 0, C∗ = C∗w,

at y∗ = 0 and t∗ > 0,

T ∗ = T ∗∞ + (T ∗w − T ∗∞)
t∗

t0
, (4)

at y∗ = 0 and 0 < t∗ ≤ t0,
T ∗ = T ∗w, at y∗ = 0 and t∗ > t0,

u∗, C∗, T ∗ → 0, as y∗ →∞ and t∗ > 0,

where u∗, T ∗ and C∗ denote the velocity, temper-
ature and concentration respectively, υ is the kine-
matic viscosity, α1 represents the material parameter
of second grade fluid, σ is the electrical conductivity
of the fluid, ρ is the fluid density, ϕ is a porosity of
porous medium, K∗ is the permeability of the porous
medium, g is the acceleration due to the gravity, βT
and βC are the thermal expansion and concentration
expansion, k is the fluid thermal diffusivity, cp is the

specific heat, qr is the radiative heat flux and D is the
mass diffusion. It is assumed that the radiative heat
flux term is produced by plates temperature T ∗∞ and
T ∗w and simplified by using Rosseland approximation,

∂qr
∂y∗

= 4α0σ
∗ (T ∗4 − T ∗4∞ ) , (5)

where α0 is the mean radiation absorption coefficient
and σ∗ is the Stefan-Boltzmann constant. We assume
that the temperature differences within the flow are
sufficiently small such that T ∗4 may be expressed as a
linear function of the temperature. Using Taylor series
by expanding T ∗4 about T ∗∞ and neglecting higher-
order terms, thus

T ∗4 ∼= 4T 3
∞T − 3T 4

∞. (6)

Introducing the following dimensionless vari-
ables

y =
y∗

L
, t =

t∗(vg)
1/3

L
, u =

u∗

(vg)
1/3
,

T =
T ∗ − T ∗∞
T ∗
w
− T ∗∞

, C =
C∗ − C∗∞
C∗
w
− C∗∞

, (7)

L =
v
2/3

g
1/3
,

1

K
=
ϕL2

K∗
, M =

σ∗B2
oL

2

µ
.

Substituting equation (6) and equation (7) into
equations (1) to (3) by eliminate the ∗ notation, the
dimensionless momentum equation can be written as

c∂u∂t = ∂2u
∂y2

+ α ∂3u
∂y2∂t

−
bu+GrT cosφ+GmC cosφ

, (8)

∂T

∂t
=

1

Pr

(
∂2T

∂y2
−RT

)
, (9)

∂C

∂t
=

1

Sc

∂2C∗

∂y∗2
, (10)

with the dimensional initial and boundary conditions
are

u,C, T = 0, at y ≥ 0 and t ≤ 0,

u = 0, C = 1, at y = 0 and t > 0,

T = t, at y = 0 and 0 < t ≤ 1, (11)

T = 1, at y = 0 and t > 1,

u, C, T → 0, as y →∞ and t > 0.

Here, u, T , C, K1, M , R, Gr, Gm, Pr, α and Sc
are nondimensional fluid velocity, temperature, con-
centration, permeability of the porous medium, mag-
netic parameter known as Hartmann number, radia-
tion parameter, thermal Grashof number and the mass
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Grashof number, Prandtl number, material module of
second grade fluids and Schmidt number, respectively.
The constants appearing in the above equations are de-
fined as

α =
α1

L2
, b = M +

1

K
, c = 1 +

α1ϕL
2

K
,

Sc =
υ

D
, Pr =

µcp
k
, R =

16ασ∗T ∗∞L
2

k
,

M =
σB2

0L
2

ρυ
,
K∗

L2
= K, (12)

Gr =
g
1/3βT (T ∗w − T ∗∞)L

υ
2/3

,

Gm =
g
1/3βm (C∗w − C∗∞)L

υ
2/3

.

3 Problem Solution
The analytical solutions for the system of equations
(8)–(10) with the initial and boundary conditions (2)
will be determined by the Laplace transform method.
The following transformed equations is s-domain are
obtained

(b+ cs) ū−GrT̄ cosφ−GmC̄ cosφ = (1 + αs)
∂2ū

∂y2
,

(13)

∂2T̄

∂y2
− (Pr s+R) T̄ = 0, (14)

∂2C̄

∂y2
− ScsC̄ = 0. (15)

The equations (14) and (14) are uncoupled from
equation (13) and their solutions are

T (y, s) =

(
1− e−s

s2

)
e−y
√

Pr(Φ+s), (16)

C (y, s) =
1

s
e−y
√
Scs, (17)

where
Φ =

R

Pr
.

In order to get T and C, by using the inverse
Laplace transform,

C (y, t) = erfc

(
y
√
Sc

2
√
t

)
, (18)

and

Tr (y, t) = T1 (y, t)− T1 (y, t− 1)H (t− 1) , (19)

where

T1 (y, t) =

(
t
2+
y
4

√
Pr
Φ

)
ey
√

Φ Prerfc

(
y
2

√
Pr
t

+
√

Φt

)

+

(
t
2−
y
4

√
Pr
Φ

)
e−y
√

Φ Prerfc

(
y
2

√
Pr
t

−
√

Φt

)
.

In order to find the solution of equation (13), let

ū (y, s) = ū1 + ū2, (20)

where

ū1 (y, s) = Gr cosφ
(Pr s+Pr Φ)(1+αs)−(b+cs)

1−e−s
s2

(
e
−y

√
b+cs
1+αs − e−y

√
Pr
√

Φ+s

)
, (21)

and
ū2 (y, s) = Gm cosφ

s[Scs(1+αs)−(b+cs)](
e
−y

√
b+cs
1+αs − e−y

√
Scs

)
.

(22)

To find the solution for u (y, s), we solve ū1 and
ū2 separately. Let

ū11 = Gr cosφ
s

1
αPr[(s+m1)2−m2

2]
,

ū12 = 1
s

(
e
−y

√
b+cs
1+αs − e−y

√
Pr
√

Φ+s

)
,

ū21 = Gm cosφ

αSc[(s+m3)2−m2
4]
,

ū22 = 1
s

(
e
−y

√
b+cs
1+αs − e−y

√
Scs

)
,

(23)

where

m1 = αPr Φ+Pr−c
2αPr ,

m2 =

√
(αPr Φ+Pr−c)2−4αPr(Pr Φ−b)

2αPr ,

m3 = Sc−c
2αSc ,

m4 =

√
(Sc−c)2−4αbSc

2αSc .

The inverse Laplace transforms for ū11 and ū21

are given by

u11 (t) = Gr cosφ
αPr

1
m2

2−m2
1[

e−m1t

m2

(
m1 sinhm2t+
m2 coshm2t

)
− 1

]
,

(24)

and

u21 (t) =
Gm cosφ

αm4Sc
e−m3t sinhm4t. (25)

In order to determine the inverse Laplace trans-
forms of ū12 and ū22, we consider the following func-
tion:

F (y, s) =
1

s
e
−y

√
b+cs
1+αs . (26)
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The inverse Laplace transform for the equation
(26) is given by

f (y, t) = b
α

∞∫
0

t∫
0

 e−
uc+t
α erfc

(
y

2
√
u

)
I0

(
2
α

√
us (c− αb)

) dsdu
+ c
α

∞∫
0

 e−
uc+t
α erfc

(
y

2
√
u

)
I0

(
2
α

√
ut (c− αb)

) du.
(27)

Thus

u12 (y, t) = f (y, t)−

1
2

 ey
√

Φ Prerfc

(
y
2

√
Pr
t + Φt

)
+

e−y
√

Φ Prerfc

(
y
2

√
Pr
t − Φt

)
 ,

(28)
and

u22 (y, t) = f (y, t)− erfc

(
y

2

√
Sc

t

)
, (29)

where I0 (·) is modified Bessel function of the first
kind of order zero and erfc (·) is complimentary error
function. Consequently, the expression for velocity in
the domain t can be written in simple form as

u (y, t) = U1 (y, t)H (t)−
U1 (y, t− 1)H (t− 1)
+U2 (y, t)H (t) ,

(30)

where

U1 (y, t) = (u11 ∗ u12) (t)

=
u∫
0

u11 (t− s)u12 (y, s) ds,

and

U2 (y, t) = (u21 ∗ u22) (t)

=
u∫
0

u21 (t− s)u22 (y, s) ds.

The symbol of (u11 ∗ u12) (t) and (u21 ∗ u22) (t)
denotes convolution product of two functions.

4 Graphical Results and Discussion
Analytical solutions of unsteady MHD free convec-
tion flow in a porous medium are investigated. In
this case, we consider second grade fluids past an infi-
nite inclined plate with ramped wall temperature. The
problem solutions are solved by using Laplace trans-
form technique. Limiting case show that the present

Figure 2: comparison of velocity u(y, t) in equation
(30) with equation (21) from Samiulhaq et al. [7]

momentum solution was reduced to published result.
As expected, the result are found identical, which
show the validity of the obtainable solution.

From Figure 2, by neglecting the effect of mass
transfer and inclination angle, the momentum equa-
tion from (30) is identical to the equation (21) by
Samiulhaq et al [7]. It is worth to mention that equa-
tions (18), (19) and (30) satisfy all the imposed initial
and boundary conditions. Hence, this also provides a
useful mathematical check to our calculi.

The obtained solutions are also studied numeri-
cally in order to determine the effects of several in-
volved parameters such as second grade parameter α,
and Hartmann number M . Figure 3 shows the effect
of second grade parameters α on velocity profiles. It
is noticed that the fluid velocity decreases and then
increases on decreasing second grade parameters.

Figure 3: velocity profiles at various second grade
parameters α

The variation of velocity for different values of
Hartmann numbers M is plotted in Figure 4. We can
see that the application of transverse magnetic field
will result a resistive type force namely the Lorentz
force. This force tends to resist the fluid flow and thus
reducing the velocity.
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Figure 4: velocity profiles at various Hartmann num-
bers M
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